NETRESEC Network Security Blog - Tag : SEC-T

rss Google News

How the SolarWinds Hack (almost) went Undetected

My lightning talk from the SEC-T 0x0D conference has now been published on YouTube. This 13 minute talk covers tactics and techniques that the SolarWinds hackers used in order to avoid being detected.

Video: Hiding in Plain Sight, How the SolarWinds Hack went Undetected

Some of these tactics included using DNS based command-and-control (C2) that mimicked Amazon AWS DNS traffic, blending in with SolarWind’s legitimate source code and handpicking only a small number of targets.

One thing I forgot to mention in my SEC-T talk though, was the speed at which the attackers were working to analyze incoming data from the trojanized installs and selecting organizations to target for stage two operations.

SolarWinds Hack Timeline

For example, just during June 2020 the attackers got more than 1300 new organizations that started beaconing in using the DNS-based C2. The beaconed data only included the organizations’ Active Directory domain name and a list of installed security applications. Based on this information the attackers had to decide whether or not they wanted to target the organization. We have previously estimated that less than 1% of the organizations were targeted, while the malicious backdoor was disabled for all the other 99% who had installed the trojanized SolarWinds Orion update.

SolarWinds C2 IP addresses

The attackers typically decided whether or not to target an organization within one week from when they started beaconing. This means that the attackers probably had several hundred organizations in queue for a targeting decision on any given week between April and August 2020. That's a significant workload!

Posted by Erik Hjelmvik on Monday, 18 October 2021 10:30:00 (UTC/GMT)

Tags: #SolarWinds#SEC-T#video#backdoor#SUNBURST#Solorigate#STAGE2#Stage 2#DNS#C2#ASCII-art

Short URL: https://netresec.com/?b=21A27a0


Reverse Engineering Proprietary ICS Protocols

Steve Miller at SEC-T

One of the highlights at this year’s SEC-T conference in Stockholm was Steve Miller’s talk titled "Reversing the TriStation Network Protocol". In this talk Steve covered his quest to better understand the TRITON malware, which had been used in a targeted attack of an industrial control system (ICS). Steve didn’t disclose the type or location of the plant, saying “Don’t ask me who it was, ‘cause I can’t say” when the Q&A started. However, an article in the Wall Street Journal points out that it was a petrochemical plant in Saudi Arabia that had been hacked.


Targeting Safety Instrumented System

The TRITON malware (also called TRISIS) was used to target a safety instrumented system (SIS) from Schneider Electric called Triconex. A SIS is typically not used to control the process of a plant, but rather to detect abnormal operating conditions and safely shut down the industrial process if needed.

I could elaborate a lot regarding the consequences of attacking the SIS, but the good guys from Dragos have already done a great job explaining this in their “TRISIS Malware” report.


Reverse Engineering the ICS Protocol

The communication protocol used by the Triconex controllers is called TriStation, which is a proprietary protocol. This means that there were no publicly available specifications available for the protocol at that time. There was also no Wireshark dissector that could parse TriStation traffic. Nevertheless, Steve’s initial reaction to this was “Awesome, undocumented things are my favorite things!”

Steve Miller: Awesome, undocumented things are my favorite things!

Unfortunately Steve wasn’t able to get hold of a single PCAP file with the TriStation network protocol, which made it really difficult to reverse engineer the protocol implementation in the TRITON malware. The only piece of actual TriStation network traffic he was able to get hold of was a hex dump of a TriStation packet in an academic paper.

Exceprt from: Attack Induced Common-Mode Failures on PLC-Based Safety System in a Nuclear Power Plant: Practical Experience Report

Armed with only the hexdump and Wireshark’s text2pcap Steve managed to piece together an actual PCAP file containing a single frame with a TriStation packet inside.

Wireshark with Steve's re-created TriStation PCAP

As you can see in the image above, Wireshark doesn’t decode any of the application layer data coming from TCP port 1502 (which TriStation uses). He therefore implemented a Wireshark Lua dissector for the TriStation protocol. And some time later the people from Nozomi Networks even implemented a proper Wireshark dissector for the TriStation protocol.

BSI’s ICS-SEC team have now also created Snort IDS rules specifically for the TriStation protocol. These IDS rules trigger on events like:

  • Packets sent to the controller from an unauthorized host
  • Malicious commands used by the TRITON malware to read and write to the RAM of the SIS controller as well as to execute code


The Importance of Sniffing ICS Traffic

I’ve been trying to convince asset owners, who use ICS in their power plants, factories, water treatment facilities etc, to start capturing the network traffic and storing it as PCAP files for many years now. However, asset owners sometimes try to argue that there is no point in capturing their traffic since it is using a proprietary protocol. Even Ralph Langner has opposed to the idea of capturing ICS network traffic in a blog post, which I have criticized. So, how difficult is it to write a parser for a proprietary protocol?

I have personally implemented support for over 30 application layer protocols in NetworkMiner, but unlike Steve I’ve always had access to at least one PCAP file and some form of documentation of the protocol. However, I’ve found that many real-world protocol implementations don’t follow specifications properly. In these cases I’ve found that having access to PCAP files with real-world network traffic is more important than having a full protocol specification.

Even complex proprietary protocols like the old proprietary Skype protocol has been reverse engineered, so with access to network traffic of a protocol combined with a binary that uses this protocol I’d say that pretty much any network protocol can be reverse engineered.

Steve’s SEC-T talk also proves that ICS protocols are no different, since they too can be reverse engineered without having a protocol specification or RFC.

Capturing network traffic in ICS networks is never wrong. There might not be parsers available today for all the protocols you’re using. But once a parser or IDS signature becomes available for the protocol you’re using, you can simply use that to analyze previously captured network traffic from your ICS network. Also, in the wake of an incident you might actually end up writing a parser (as in the TRITON case) or a custom IDS rule, in which case having historical network traffic from your plant in invaluable!

For more information on this topic I’d suggest reading my blog post titled “Monitor those Control System Networks!” from 2011, which still is highly relevant.

I’m also happy to announce that two PCAP files containing TriStation network traffic have been linked from our list of publicly accessible PCAP files today (see the “SCADA/ICS Network Captures” section).

And remember: PCAP or it didn’t happen!

Posted by Erik Hjelmvik on Friday, 21 September 2018 14:20:00 (UTC/GMT)

Tags: #ICS#PCAP#SCADA#SEC-T#Wireshark#Snort

Short URL: https://netresec.com/?b=189158c


Two-day Network Forensics Class in Stockholm

Network Forensics Training in Stockholm

We are running a two-day Network Forensics class in Stockholm on 15-16th of September.

SEC-T.org logo Our class is held the days before the SEC-T conference, which is a great technical information security conference in Stockholm, and at the same venue (Nalen). Visitors can thereby plan 4 days of training and conferencing in Stockholm without having to transfer between hotels.

The Network Forensics class consists of a mix of theory and hands-on labs, where students will learn to analyze Full Packet Capture (FPC) files. The scenarios in the labs are primarily focused at network forensics for incident response, but are also relevant for law enforcement/internal security etc. where the network traffic of a suspect or insider is being monitored.

You can find more information about the class here:
http://www.netresec.com/?page=Training

Posted by Erik Hjelmvik on Wednesday, 03 June 2015 21:30:00 (UTC/GMT)

Tags: #Netresec#PCAP#NSM#Network Forensics#Class#Training#SEC-T

Short URL: https://netresec.com/?b=156A65B

X / twitter

NETRESEC on X / Twitter: @netresec

Mastodon

NETRESEC on Mastodon: @netresec@infosec.exchange